Problem
A non-empty array A consisting of N integers is given. Array A represents numbers on a tape.
Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].
The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|
In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
For example, consider array A such that:
A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3
We can split this tape in four places:
- P = 1, difference = |3 − 10| = 7
- P = 2, difference = |4 − 9| = 5
- P = 3, difference = |6 − 7| = 1
- P = 4, difference = |10 − 3| = 7
Write a function:
int solution(int A[], int N);
that, given a non-empty array A of N integers, returns the minimal difference that can be achieved.
For example, given:
A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3
the function should return 1, as explained above.
Assume that:
- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−1,000..1,000].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N) (not counting the storage required for input arguments).
Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.
Solution Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | package io.dorbae.study.algorithm.codility.timecomplexity; /***************************************************************** * * TapeEquilibrium.java * * * A non-empty array A consisting of N integers is given. Array A represents numbers on a tape. Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1]. The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])| In other words, it is the absolute difference between the sum of the first part and the sum of the second part. For example, consider array A such that: A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3 We can split this tape in four places: P = 1, difference = |3 − 10| = 7 P = 2, difference = |4 − 9| = 5 P = 3, difference = |6 − 7| = 1 P = 4, difference = |10 − 3| = 7 Write a function: class Solution { public int solution(int[] A); } that, given a non-empty array A of N integers, returns the minimal difference that can be achieved. For example, given: A[0] = 3 A[1] = 1 A[2] = 2 A[3] = 4 A[4] = 3 the function should return 1, as explained above. Assume that: N is an integer within the range [2..100,000]; each element of array A is an integer within the range [−1,000..1,000]. Complexity: expected worst-case time complexity is O(N); expected worst-case space complexity is O(N) (not counting the storage required for input arguments). Copyright 2009–2018 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited. * ***************************************************************** * * @version 0.0.0 2018-06-01 15:04:21 dorbae 최초생성 * @since 1.0 * @author dorbae(dorbae.io@gmail.com) * */ public class TapeEquilibrium { private static final int RESCODE_INVALID = 0; /** * * @version 1.2.0 2018-06-02 15:05:10 dorbae Remove unnecessary logic and modify incorrect logic * @version 1.1.0 2018-06-02 14:45:06 dorbae Add exception about range of elements * @version 1.0.0 2018-06-01 15:10:34 dorbae 최초생성 * @since 1.0.0 * @author dorbae(dorbae.io@gmail.com) * * @param A : a non-empty array (the range of elements is -1000 ~ 1000) * * @return : a minimal different between two arrays that be seperated by Pb */ public int solution( int[] A) { if ( A == null) { System.err.println( "Invalid array A."); return RESCODE_INVALID; } /** N : the length of array A. 2 <= N < 100,000 */ int N = A.length; if ( N < 2 || N > 100000) { System.err.println( "Invalid array A."); return RESCODE_INVALID; } int minimumValue = Integer.MAX_VALUE; int preValue = 0; int postValue = 0; int differntValue = 0; int ll = 0; preValue = 0; postValue = 0; /* Removed in ver 1.2.0 preValue = A[ 0]; // Exception if ( A[ 0] < -1000 || A[ 0] > 1000) { System.err.println( "Invalid elment value."); return RESCODE_INVALID; } */ for ( ll = 0; ll < N; ll++) { /* Added in ver 1.1.0 */ // Exception if ( A[ ll] < -1000 || A[ ll] > 1000) { System.err.println( "Invalid elment value."); return RESCODE_INVALID; } /* End */ postValue += A[ ll]; } /* Removed in ver 1.2.0 differntValue = Math.abs( preValue - postValue); if ( differntValue < minimumValue) { minimumValue = differntValue; } */ /* Modified in ver 1.2.0 */ /* P : a index to split array A. (seperated arrays must be not empty.). 0 < P < N */ --N; for ( int P = 0; P < N; P++) { preValue += A[ P]; postValue -= A[ P]; differntValue = Math.abs( preValue - postValue); if ( differntValue < minimumValue) { minimumValue = differntValue; } } return minimumValue; } } |
No comments:
Post a Comment